Bulk metallic glass rings have the potential applications as annular gasket and active solder in special fields. The bulk metallic glass ring of ZГ41.2Ti13.8Cu12.5Ni10.0Be22.5 with the outer diameter, the inner diameter, and the thickness of 38, 36, and 5 mm, respectively, was prepared by using a special shaped quartz tube water quenching method. The mechanical properties along the whole cross section were investigated by a nanoindentation method, and no evident variation of the Young's modulus and hardness was found, further indicating the single amorphous structure. Amorphous ring and tube-shape parts with different dimensions can be produced by this method.
Starting with Zr of two different purities, Ti-based bulk metallic glasses (BMGs) with a nominal composition of Ti40Zr25Cu12Ni3Be20 were prepared. The effect of the addition of yttrium at levels of 0.2 at.%, 0.4 at.%, 0.5 at.%, 0.6 at.%, and 1 at.% on the glass forming ability (GFA) of the alloy has been investigated by means of metallography, X-ray diffraction, and differential scanning calorimetry. Experimental data in-dicates that high impurity content dramatically reduces the glass forming ability. Microalloying with 0.5 at.% Y is effective in suppressing the crystalline phase formation and alleviating the detrimental effect of oxygen in the low-purity alloy. On the contrary, in the alloy contain-ing high-purity element, the effective yttrium addition is less than 0.4 at.%. The results indicate that the beneficial effect of the optimum dopants is mainly due to scavenging the oxygen impurity via the formation of innocuous phase.
MCoCrFeNiTix (M = Cu, Al; x: molar ratio, x = 0, 0.5) alloys were prepared using the new alloy-design strategy of equal-atomic ratio and high entropy. By the component substitution orAl for Cu, the microstructure changes from the face-centered cubic solid solution of original CuCoCrFeNiTix alloys to the body-centered cubic solid solution of AlCoCrFeNiTix alloys. Compared with original CuCoCrFeNiTix alloys, AlCoCrFeNiTix alloys keep the similar good ductility and simultaneously possess a much higher compressive strength, which are even superior to most of the reported high-strength alloys like bulk metallic glasses.
ZHOU Yunjun ZHANG Yong WANG Xuefei WANG Yanli CHEN Guoliang