Quantum walks have been investigated as they have remarkably different features in contrast to classical random walks. We present a quantum walk in a one-dimensional architecture, consisting of two coins and a walker whose evolution is in both position and phase spaces alternately controlled by the two coins respectively. By analyzing the dynamics evolution of the walker in both the position and phase spaces, we observe an influence on the quantum walk in one space from that in the other space, which behaves like decoherence. We propose an implementation of the two-coin quantum walk in both position and phase spaces via cavity quantum electrodynamics (QED).
This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks.
The collective excitations of spin states of an ensemble of polar molecules are studied as a candidate for high- fidelity quantum memory. To avoid the collisional properties of the molecules, they are arranged in dipolar crystals under one or two dimensional trapping conditions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence mechanisms and estimating their effects on gate operations when a molecular ensemble qubit is transferred to a microwave cavity.
We study the spin squeezing property of weighted graph states,which can be used to improve sensitivity in interferometry.We study the time evolution of spin squeezing under local decoherence acting independently on each qubit.Based on the analysis,the spin squeezing of the weighted graph states is somehow robust in the presence of decoherence and the decoherence limit in the improvement of the interferometric sensitivity is still achievable.Furthermore,one can obtain the optimal improvement of sensitivity by tuning the weighted of each edges of the weighted graph state.
We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By choosing a certain evolution time, we propose the realization of a set of universal single-and two-qubit logical gates. Due to its intrinsic stability and scalability, the silicon dangling-bond charge qubit can be regarded as one of the most promising candidates for quantum computation. Compared to the previous schemes on quantum computing with silicon bulk systems, our scheme shows such advantages as a long coherent time and direct control and readout.