The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection.Based on a two-dimensional model,the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed.On the other hand,when the heat flux of the heating surface is fixed,the minimum thermal resistance corresponds to the minimum average temperature of the heating surface.The entropy optimization is also given for the heat transfer processes.It is observed that the minimum entropy generation,the minimum entropy generation number,and the minimum revised entropy generation number do not always correspond to the best heat transfer performance.In addition,the influence factors on the optimized aspect ratio of the plate fin are also discussed.The optimized ratio decreases with the enhancement of heat convection,while it increases with fin thermal conductivity increasing.
Based on the relationship between entransy and microstate number, we discuss the variations of the available transport entransy, the unavailable transport entransy, the available conversion entransy and the unavailable conversion entransy with the microstate number. We focus on physical processes in which heat is used for heating/cooling or doing work. When heat is transported for heating or cooling, the available transport entransy increases if the increase in microstate number is due to the increase in internal energy of the system, and decreases if the increase in microstate number is due to spontaneous heat transfer. When heat is used to do work, both the available conversion entransy and the unavailable conversion entransy increase if the increase in microstate number relates to the growth in internal energy of the system. The available conversion entransy decreases and the unavailable conversion entransy increases if the increase in microstate number results from spontaneous heat transfer.
Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.
The concept of entransy developed in recent years can describe the heat transport ability.This paper extends this concept to the open thermodynamic system and defines the concept of enthalpy entransy.The entransy balance equation of steady open thermodynamic systems,as well as the concept of entransy loss,is developed.The entransy balance equation is applied to analyzing and discussing the air standard cycle.It is found that the entransy loss rate can describe the change in net power output from the cycle but the entropy generation rate cannot when the heat absorbed by the working medium is from the combustion reaction of the gas fuel.When the working medium is heated by a high temperature stream,both the maximum entransy loss rate and the minimum entropy generation rate correspond to the maximum net power output from the cycle.Hence,the concept of entransy loss is an appropriate figure of merit that describes the cycle performance.
Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always.