As the transistor's feature scales down and the integration density of the monolithic circuit increases continuously,the traditional metal interconnects face significant performance limitation to meet the stringent demands of high-speed,low-power and low-latency data transmission for on-and off-chip communications.Optical technology is poised to resolve these problems.Due to the complementary metal-oxide-semiconductor(CMOS) compatible process,silicon photonics is the leading candidate technology.Silicon photonic devices and networks have been improved dramatically in recent years,with a notable increase in bandwidth from the megahertz to the multi-gigahertz regime in just over half a decade.This paper reviews the recent developments in silicon photonics for optical interconnects and summarizes the work of our laboratory in this research field.
HU TingQIU ChenYU PingYANG LongZhiWANG WanJunJIANG XiaoQingYANG MeiZHANG LeiYANG JianYi
We demonstrate a high-Q hybrid surface-plasmon-polariton-photonic crystal(SP3C) nanobeam cavity.The proposed cavities are analyzed numerically using the three-dimensional finite difference time domain(3D-FDTD) method.The results show that a Q-factor of 2076 and a modal volume V of 0.16(/2n) 3 can be achieved in a 50 nm silica-gap hybrid SP3C nanobeam cavity when it operates at telecommunications wavelengths and at room temperature.V can be further reduced to 0.02(/2n) 3 when the silica thickness decreases to 10 nm,which leads to a Q/V ratio that is 11 times that of the corresponding plasmonic-photonic nanobeam cavity(without silica).The ultrahigh Q/V ratio originates from the low-loss nature and deep sub-wavelength confinement of the hybrid plasmonic waveguide,as well as the mode gap effect used to reduce the radiation loss.The proposed structure is fully compatible with semiconductor fabrication techniques and could lead to a wide range of applications.