Macroporous titania monoliths were prepared via sol-gel method using polymer foam as templates. The polymer foam polymerized via concentrated emulsion polymerization was immerged in a solution of titanium(Ⅳ) isopropoxide in 2-propanol, which underwent a sol-gel process. The organic components were subsequently removed by calcination. The effects of various parameters, including the nature of the monomer, the volume fraction of dispersed phase of the concentrated emulsion, and concentration of the sol-gel solution were investigated. The SEM micrographs of the macroporous titania monoliths thus obtained showed that the porous structure of the final material was effectively controllable.
Covalent functionalization of multiwalled carbon nanotubes (MWNT) with poly(acrylic acid) has been successfully achieved via grafting of poly(acryloyl chloride) on nanotube surface by esterification reaction of acyl chloride-bound polymer with hydroxyl functional groups present on acid-oxidized MWNT and hydrolysis of polymer attached to nanotubes. Polymer-functionalized MWNT could possess remarkably high solubility in water, and their aqueous solution was very stable without any observable black deposit for a long time. Characterizations of such functionalized MWNT samples using Fourier transform infrared spectrometer, transmission electron microscopy and nuclear magnetic resonance techniques indicated that poly(acrylic acid) was covalently attached to the surface of MWNT.