渗透汽化膜技术替代传统精馏工艺分离环戊二烯/甲基环戊二烯碳五馏分同系物。以丙酮为非极性成膜添加剂,水为凝胶介质,采用溶胶-凝胶二步法合成BPADA-ODA非对称聚酰亚胺膜,利用FT-IR表征聚酰胺酸和非对称膜组成,SEM表征膜表面和断面结构形貌,并探讨膜厚、原料液流量等膜工艺参数对分离性能的影响。结果表明:BPADA与ODA化学亚胺化完全,膜表面无孔致密,膜断面为致密皮层和指状多孔支撑层构成,膜厚增加,膜分离因子增大而渗透通量减小,最优膜厚为110μm,原料流量为30 m L·min-1。膜分离性能长期稳定,32 h渗透通量可达236.6 mg·m-2·h-1,CPD分离因子达1.61,原料液可分离提纯96.2%(wt)的甲基环戊二烯。
In this paper, cationic polyacrylamide microspheres (CPAM) were synthesized using acrylamide (AM) and methacryloyloxyethyl trimethyl ammonium chloride (TMAEMC) as monomers, ammonium sulfate as dispersant, poly(acryloyloxyethyl trimethyl ammonium chloride) (PAETAC) as dispersion stabilizer, and ammonium persulfate as initiator. The synthetic method was dispersion polymerization. The effects of monomer ratio (AM/TMAEMC), dispersant concentration, and dispersion stabilizer dosage on dispersion polymerization were systematically studied to determine the optimal preparation conditions. The structure and viscosity of the synthesized polymer were characterized by FTIR and capillary viscometry, respectively, and the particle sizes and distribution of the polymer microspheres were characterized by microscopy and dynamic light scattering, respectively. Finally, flow tests were conducted to measure the permeability reduction performance of the microspheres at various concentrations in sand packs with different permeability. Results show that CPAM emulsion of a solids content of 1 wt% has excellent performance in low-to-medium permeability formations (〈 1,000 mD), and the efficiency may reach above 90%.