Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control policies implemented recently in China through a modeling analysis. The sulfur dioxide (SO2) control policy during the llth Five Year Plan period (2006-2010) had succeeded in reducing the national SO2 emission in 2010 by 14% from its 2005 level, which correspondingly reduced ambient SO2 and sulfate (SO42-) concentrations by 13%-15% and 8%-10% respectively over east China. The nitrogen oxides (NOx) control policy during the 12th Five Year Plan period (2011-2015) targets the reduction of the national NOx emission in 2015 by 10% on the basis of 2010. The simulation results suggest that such a reduction in NOx emission will reduce the ambient nitrogen dioxide (NO2), nitrate (NO3-), 1-hr maxima ozone (03) concentrations and total nitrogen deposition by 8%, 3%-14%, 2% and 2%--4%, respectively over east China. The application of new emission standards for power plants will further reduce the NO2, NO3-, 1-hr maxima 03 concentrations and total nitrogen deposition by 2%-4%, 1%-%, 0-2% and 1%-2%, respectively. Sensitivity analysis was conducted to evaluate the inter-provincial impacts of emission reduction in Beijing-Tianjin-Hebei and the Yangtze River Delta, which indicated the need to implement joint regional air pollution control.
A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.
PM2.5 and gaseous pollutants(SO2,HNO2,HNO3,HCl,and NH3) were simultaneously collected by Partisol- Model 2300 Sequential Speciation Sampler with denuder-filter pack system in the spring of 2013 in Beijing.Water-soluble inorganic ions and gaseous pollutants were measured by Ion Chromatography.Results showed that the concentrations of NH3,NH+ 4and PM2.5 had similar diurnal variation trends and their concentrations were higher at night than in daytime.The results of gas-to-particle conversion revealed that [NH3]:[NH+4] ratio was usually higher than 1; however,it was less than 1 and the concentration of NH+4 increased significantly during the haze episode,indicating that NH3 played an important role in the formation of fine particle.Research on the sampling artifacts suggested that the volatilization loss of NH+4 was prevalent in the traditional single filter-based sampling.The excess loss of HNO3 and HCl resulted from ammonium-poor aerosols and semivolatile inorganic species had severe losses in the clean day,whereas the mass of NH+ 4was usually overestimated during the single filter-based sampling due to the positive artifacts.Correlation analysis was used to evaluate the influence of meteorological conditions on the volatilization loss of NH+4.It was found that the average relative humidity and temperature had great effects on the loss of NH+4.The loss of NH+4 was significantly under high temperature and low humidity,and tended to increase with the increasing of absorption of gaseous pollutants by denuder.The total mass of volatile loss of NH+4,NO- 3and Cl- could not be ignored and its maximum value was 12.17 μg m-3.Therefore it is important to compensate sampling artifacts for semivolatile inorganic species.
Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.
Formaldehyde(HCHO)is carcinogenic and teratogenic,and is therefore a serious danger to human health.It also adversely affects air quality.Catalytic oxidation is an efficient technique for removing HCHO.The development of highly efficient and stable catalysts that can completely convert HCHO at low temperatures,even room temperature,is important.Supported Pt and Pd catalysts can completely convert HCHO at room temperature,but their industrial applications are limited because they are expensive.The catalytic activities in HCHO oxidation of transition-metal oxide catalysts such as manganese and cobalt oxides with unusual morphologies are better than those of traditional MnO2,Co3O4,or other metal oxides.This is attributed to their specific structures,high specific surface areas,and other factors such as active phase,reducibility,and amount of surface active oxygens.Such catalysts with various morphologies have great potential and can also be used as catalyst supports.The loading of relatively cheap Ag or Au on transition-metal oxides with special morphologies potentially improves the catalytic activity in HCHO removal at room temperature.The preparation and development of new nanocatalysts with various morphologies and structures is important for HCHO removal.In this paper,research progress on precious-metal and transition-metal oxide catalyst systems for HCHO oxidation is reviewed; topics such as oxidation properties,structure–activity relationships,and factors influencing the catalytic activity and reaction mechanism are discussed.Future prospects and directions for the development of such catalysts are also covered.
Perfluorooctanoic acid (PFOA), a persistent organic pollutant, receives increasing concerns due to its worldwide occurrence and resistance to most conventional treatment processes. The photochemical decomposition by 185 nm vacuum ultraviolet (VUV) is one of the efficient methods for PFOA decomposition. The effects of pH on PFOA decomposition in nitrogen atmosphere or oxygen atmosphere were investigated. At its original pH (4.5) of PFOA aqueous solution, PFOA decomposed efficiently both in nitrogen and in oxygen atmosphere. However, when the pH increased to 12.0, PFOA decomposition was greatly inhibited in oxygen atmosphere, while it was greatly accelerated in nitrogen atmosphere with a very short half-life time (9 rain). Furthermore, fluorine atoms originally contained in PFOA molecules were almost completely transformed into fluoride ions. Two decomposi- tion pathways have been proposed to explain the PFOA decomposition under different conditions. In acidic and neutral solutions, PFOA predominantly decomposes via the direct photolysis in both atmospheres; while in the alkaline solution and in the absence of oxygen, the decomposition of PFOA is mainly induced by hydrated electrons.