In this paper, starting from a function analytic in a neighborhood of the unit disk and based on Bessel functions, we construct a family of generalized multivariate sinc functions, which are radial and named radial Bessel-sinc (RBS) functions being time-frequency atoms with nonlinear phase. We obtain a recursive formula for the RBS functions in R d with d being odd. Based on the RBS function, a corresponding sampling theorem for a class of non-bandlimited signals is established. We investigate a class of radial functions and prove that each of these functions can be extended to become a monogenic function between two parallel planes, where the monogencity is taken to be of the Clifford analysis sense.
This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.