The nonlinear properties of lattice network-based(LNB) composite right-/left-handed transmission lines(CRLH TLs)with nonlinear capacitors are experimentally investigated.Harmonic generation,subharmonic generation,and parametric excitation are clearly observed in an unbalanced LNB CRLH TL separately.While the balanced design of the novel nonlinear TL shows that the subharmonic generation and parametric processes can be suppressed,and almost the same power level of the higher harmonics can be achieved over a wide bandwidth range,which are difficult to find in conventional CRLH TLs.
We present several design examples of how to apply transformation optics and curved space under coordinate transformation to manipulating the surface plasmon waves in a controlled manner.We demonstrate in detail the design procedure of the plasmonic wave squeezer,in-plane bend and omnidirectional absorber.We show that the approximation method of modifying only the dielectric material of a dielectric-metal surface of the plasmonic device could lead to acceptable performance,which facilitates the fabrication of the device.The functionality of the proposed plasmonic device is verified using three-dimensional full-wave electromagnetic simulations.Aiming at practical realization,we also show the design of a plasmonic in-plane bend and omnidirectional absorber by an alternative transformation scheme,which results in a simple device structure with a tapered isotropic dielectric cladding layer on the top of the metal surface that can be fabricated with existing nanotechnology.
We present the design and the experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line(TL) metamaterials. The fabricated cloak consists of tensor TL unit cells exhibiting anisotropic effective material parameters, while the background medium consists of isotropic TL unit cells. The simulated and the measured field patterns around the cloak show a fairly good agreement, both demonstrate that the fabricated cloak can shield the cloaked interior area from electromagnetic fields without perturbing the external fields. The scattering of the cloaked perfect electric conductor(PEC) is minimized. Furthermore, the nonresonant property of the TL structure results in a relatively broad bandwidth of the realized cloak, which is clearly observed in our experiment.
为了克服标签天线小型化技术中结构复杂,不易于与标签芯片匹配等问题,设计了一种基于开口环谐振器(split ring resonator,SRR)的天线结构。为了实现天线与芯片之间的匹配,该天线采用T型馈电网络。仿真结果表明:该天线具有较好的S11特性。天线的工作频段也包含中国UHF频段的920~925 MHz。设计的天线尺寸约为30mm×25mm,结构简单,很好地实现了天线小型化,并用矢量网络分析仪对天线的阻抗特性进行测试,且测试结果与仿真结果基本吻合。
In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin- image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.