The symmetries and the exact solutions of the (3+l)-dimensional nonlinear incompressible non-hydrostatic Boussi- nesq (INHB) equations, which describe atmospheric gravity waves, are studied in this paper. The calculation on symmetry shows that the equations are invariant under the Galilean transformations, the scaling transformations, and the space-time translations. Three types of symmetry reduction equations and similar solutions for the (3+ 1)-dimensional INHB equations are proposed. Traveling and non-traveling wave solutions of the INHB equations are demonstrated. The evolutions of the wind velocities in latitudinal, longitudinal, and vertical directions with space-time are demonstrated. The periodicity and the atmosphere viscosity are displayed in the (3+1)-dimensional INHB system.
We propose a scheme to achieve a kind of nontrivial multipartite pair-wise controlled phase operation in a cavity QED setup. The operation implemented is of geometrical nature and is not sensitive to the thermal state of the cavity. In particular, we have managed to avoid the conventional dispersive coupling so that high speed gate operation is achieved which is very important in view of decoherence. We show that this multipartite pair-wise controlled phase operation makes the generation of two-dimensional cluster states very efficient.
The hybrid lattice,known as a discrete Korteweg-de Vries(KdV)equation,is found to be a discrete modified Korteweg-de Vries(mKdV)equation.The coupled hybrid lattice,which is pointed out to be a discrete coupled KdV system,is also found to be a discrete form of a coupled mKdV system.New lax pairs for the single and coupled discrete hybrid systems are proposed as a different study from previous ones.