Apatite-type lanthanum silicate with special conduction mechanism via interstitial oxygen has attracted considerable interest in recent years. In this work, pure powder of La9.33 2x/3MxSi6O26 (M=Mg, Ca, Sr) is prepared by the sol-gel method with sintering at 1000℃. The powder is characterized by X-ray diffraction (XRD) and scanning electron micrograph (SEM). The apatite can be obtained at relatively low temperature as compared to the conventional solid-state reaction method. The measurements of conductivity of a series of doped samples La9.33-2x/3MxSi6O26 (M=Ca, Mg, Sr) indicate that the type of dopant and the amount have a significant effect on the conductivity. The greatest decrease in conductivity is observed for Mg doping, following the Ca and the Sr doped apatites. The effect is ultimately attributed to the amount of oxygen interstitials, which is affected by the crystal lattice distortion arising from cation vacancies.
Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and the influences of V-dopant content on calcining temperature and conductivity were reported.The samples were characterized by thermal analysis(TG-DSC) ,X-ray diffraction(XRD) and scanning electron micrograph(SEM) . The apatite was obtained at 800°C,a relatively low temperature in comparison to 1500°C with the conventional solid-state method.The ceramic pellets sintered at 1200°C for 5 h showed a higher relative density than La9.33Si6O26 pellets sintered at 1400°C for 20 h.The conductivities of samples were measured by electrochemical impedance spectroscopy.The conductivity was improved with the increase of V-dopant content on La site.