This paper takes full advantages of the I-V transconductance characteristics of metal-oxide semiconductor field effect transistor (MOSFET) operating in the subthreshold region and the enhancement pre-regulator technique with the high gain negative feedback loop. The proposed reference circuit, designed with the SMIC 0.18 μm standard complementary metal-oxide semiconductor (CMOS) logic process technology, exhibits a stable current of about 1.701 μA with much low temperature coefficient (TC) of 2.5×10^-4μA/℃ in the temperature range of-40 to 150℃ at 1.5 V supply voltage, and also achieves a best PSRR over a broad frequency. The PSRR is about - 126 dB at DC frequency and remains -92 dB at the frequency higher 100 MHz. Moreover the proposed reference circuit operates stably at the supply voltage higher 1.2 V and has good process compatibility.
In this paper, a threshold voltage model for high-k gate-dielectric metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed, with more accurate boundary conditions of the gate dielectric derived through a conformal mapping transformation method to consider the fringing-field effects including the influences of high-k gate-dielectric and sidewall spacer. Comparing with similar models, the proposed model can be applied to general situations where the gate dielectric and sidewall spacer can have different dielectric constants. The influences of sidewall spacer and high-k gate dielectric on fringing field distribution of the gate dielectric and thus threshold voltage behaviours of a MOSFET are discussed in detail.
Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface properties, gate-oxide leakage and device reliability is investigated. Among the surface pretreatments in NH3, NO, N2O and TCE ambients, the TCE pretreatment gives the least interlayer growths the lowest interface-state density, the smallest gate leakage and the highest reliability. All these improvements should be ascribed to the passivation effects of Cl2 and HC1 on the structural defects in the interlayer and at the interface, and also their gettering effects on the ion contamination in the gate dielectric.