A heterochromatie tree is an edge-colored tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted by tr (G), is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we determine the heterochromatic tree partition number of r-edge-colored complete graphs. We also find at most tr(Kn) vertex-disjoint heterochromatic trees to cover all the vertices in polynomial time for a given r-edge-coloring of Kn.
Bollobas and Gyarfas conjectured that for n 〉 4(k - 1) every 2-edge-coloring of Kn contains a monochromatic k-connected subgraph with at least n - 2k + 2 vertices. Liu, et al. proved that the conjecture holds when n 〉 13k - 15. In this note, we characterize all the 2-edge-colorings of Kn where each monochromatic k-connected subgraph has at most n - 2k + 2 vertices for n ≥ 13k - 15.