Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
For the section coupled system of multilayer dynamics of fluids in porous media, a parallel scheme modified by the characteristic finite difference fractional steps is proposed for a complete point set consisting of coarse and fine partitions. Some tech- niques, such as calculus of variations, energy method, twofold-quadratic interpolation of product type, multiplicative commutation law of difference operators, decomposition of high order difference operators, and prior estimates, are used in theoretical analysis. Optimal order estimates in 12 norm are derived to show accuracy of the second order approximation solutions. These methods have been used to simulate the problems of migration-accumulation of oil resources.
A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.
Yirang YUANAijie CHENGDanping YANGChangfeng LIYunxin LIU
A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.