In this paper, we present a theoretical analysis on stability and convergence of the cautious control, which has advantages over the traditional certainty equivalence adaptive control, since it takes the parameter estimation error into account in the design, and is also one-step-ahead optimal in the mean square sense under Gaussian assumptions.
The collective behavior of multi-agent systems is an important studying point for the investigation of complex systems, and a basic model of multi-agent systems is the so called Vicsek model, which possesses some key features of complex systems, such as dynamic behavior, local interaction, changing neighborhood, etc. This model looks simple, but the nonlinearly coupled relationship makes the theoretical analysis quite complicated. Jadbabaie et al. analyzed the linearized heading equations in this model and showed that all agents will synchronize eventually, provided that the neighbor graphs associated with the agents' positions satisfy a certain connectivity condition. Much subsequent research effort has been devoted to the analysis of the Vicsek model since the publication of Jadbabaie's work. However, an unresolved key problem is when such a connectivity is satisfied. This paper given a sufficient condition to guarantee the synchronization of the Vicsek model, which is imposed on the model parameters only. Moreover, some counterexamples are given to show that the connectivity of the neighbor graphs is not sufficient for synchronization of the Vicsek model if the initial headings are allowed to be in [0,2π), which reveals some fundamental differences between the Vicsek model and its linearized version.