An importance analysis model for computer numerical control(CNC)lathe subsystems was proposed.The model was based on technique for order preference by similarity to an ideal solution(TOPSIS)and considered the structure correlation between subsystems and the complete machine,the fault correlation of each subsystem and so on.The model can obtain a comprehensive sequencing of subsystems based on their importance to the complete machine.It lays a theoretical foundation for reliability allocation.
Combined Reliability distribution with correlation analysis,a new method has been proposed to make Reliability distribution where considering the elements about structure correlation and failure correlation of subsystems.Firstly,we make a sequence for subsystems by means of TOPSIS which comprehends the considerations of Reliability allocation,and introducing a Copula connecting function to set up a distribution model based on structure correlation,failure correlation and target correlation,and then acquiring reliability target area of all subsystems by Matlab.In this method,not only the traditional distribution considerations are concerned,but also correlation influences are involved,to achieve supplementing information and optimizing distribution.
In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system.
Ying-Zhi ZhangJin-Tong LiuGui-Xiang ShenZhe LongShu-Guang Sun