您的位置: 专家智库 > >

国家自然科学基金(s10831004)

作品数:4 被引量:8H指数:2
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇理学

主题

  • 2篇SPACE
  • 1篇PARAME...
  • 1篇POLYNO...
  • 1篇POSITI...
  • 1篇QUASI
  • 1篇SINGUL...
  • 1篇APPLIC...
  • 1篇BETWEE...
  • 1篇CONJUG...
  • 1篇CONTRO...
  • 1篇CURVE
  • 1篇DOMAIN
  • 1篇HAUSDO...
  • 1篇JORDAN
  • 1篇MAPPIN...
  • 1篇MAPPIN...
  • 1篇MAPS
  • 1篇P-ADIC
  • 1篇DISTOR...

传媒

  • 3篇Scienc...
  • 1篇Acta M...

年份

  • 1篇2014
  • 1篇2013
  • 1篇2012
  • 1篇2010
4 条 记 录,以下是 1-4
排序方式:
Distortion control of conjugacies between quadratic polynomials被引量:3
2010年
We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials.
CUI GuiZhen 1, & TAN Lei 2 1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
关键词:DISTORTIONCONJUGACYPOLYNOMIAL
Hausdorff dimension of quasi-cirles of polygonal mappings and its applications被引量:1
2013年
We show that the Hausdorff dimension of quasi-circles of polygonal mappings is one. Furthermore, we apply this result to the theory of extremal quasiconformal mappings. Let [μ] be a point in the universal Teichmiiller space such that the Hausdorff dimension of fμ(δ△) is bigger than one. We show that for every kn ∈ (0, 1) and polygonal differentials δn, n = 1, 2, the sequence {[kn δn/|δn|} cannot converge to [μ] under the Teichmiiller metric.
HUO ShengJinTANG ShuAnWU ShengJian
Fatou Components and Julia Sets of Singularly Perturbed Rational Maps with Positive Parameter被引量:2
2012年
In this paper, we discuss the rational maps Fλ(z)=z^n+λ/z^n,n≥2with the positive real parameter )λ. It is shown that the immediately attracting basin Bλ of ∞ for Fλ is always a Jordan domain if the Julia set of Fλ is not a Cantor set. Fuhermore, Bλ is a quasidisk if there is no parabolic fixed point on the boundary of Bλ. It is also shown that if the Julia set of Fλ is connected, then it is locally connected and all Fatou components are Jordan domains. Finally, a complete description to the problem when the Julia set is a Sierpirlski curve is given.
Wei Yuan QIULan XIEYong Cheng YIN
The pointwise convergence of p-adic Mbius maps被引量:2
2014年
The convergence of linear fractional transformations is an important topic in mathematics.We study the pointwise convergence of p-adic Mbius maps,and classify the possibilities of limits of pointwise convergent sequences of Mbius maps acting on the projective line P1(C p),where C p is the completion of the algebraic closure of Q p.We show that if the set of pointwise convergence of a sequence of p-adic Mbius maps contains at least three points,the sequence of p-adic Mbius maps either converges to a p-adic Mbius map on the projective line P1(C p),or converges to a constant on the set of pointwise convergence with one unique exceptional point.This result generalizes the result of Piranian and Thron(1957)to the non-archimedean settings.
WANG YueFeiYANG JingHua
共1页<1>
聚类工具0