It meets some difficulties in the case of ultrasonic phased arrays testing for the nickel-based alloy welded joint, since the ultrasound will propagate with curvilinear paths in this kind anisotropic joint. Thus, it is hard to calculate the phased array time delays properly according to the traditional focusing approach, which is based on the assumption that the sound beam will propagate in straight lines. In order to focus the phased arrays beam in this kind anisotropic joint, we provide a modified focusing approach by combining the ray tracing method and the bisectional searching optimization. With the help of this focusing approach, the curved ray path connecting each element position in phased arrays to the expected focus point in weldments can be determined, so that it can be used to calculate the proper time delay and control the beam focusing in the anisotropic weldment. Furthermore, some experimental examinations are carried out to compare the focusing behaviors between the traditional and the modified focusing approach. It shows that the provided focusing approach is more accurate than the traditional method in the case of inspection on the nickel-based alloy weldments.
Based on the theory of unsteady hydrodynamic lubrication and relevant mathematic and physical methods, a basic model was developed to analyze the unsteady lubrication film thickness, pressure stress and friction stress in the work zone in strip rolling. The distribution of pressure stress and friction stress in the work zone was obtained. A numerical simulation was made on a 1850 cold rolling mill. The influence of back tension stress and reduction on the distribution of pressure stress and friction stress between the roll gaps was qualitatively analyzed by numerical simulation. The calculated results indicate that the higher the back tension, the lower the pressure stress and the friction stress in the work zone, and the largest friction stresses are obtained at the inlet and outlet edges. The pressure and friction gradients are rather small at high back tension. The pressure-sensitive lubricant viscosity increases exponentially with the increase of pressure. The unsteady lubrication phenomenon in the roll bite is successfully demonstrated.