Sensors are ubiquitous in the Internet of Things for measuring and collecting data. Analyzing these data derived from sensors is an essential task and can reveal useful latent information besides the data. Since the Internet of Things contains many sorts of sensors, the measurement data collected by these sensors are multi-type data, sometimes contai- ning temporal series information. If we separately deal with different sorts of data, we will miss useful information. This paper proposes a method to dis- cover the correlation in multi-faceted data, which contains many types of data with temporal informa- tion, and our method can simultaneously deal with multi-faceted data. We transform high-dimensional multi-faeeted data into lower-dimensional data which is set as multivariate Gaussian Graphical Models, then mine the correlation in multi-faceted data by discover the structure of the multivariate Gausslan Graphical Models. With a real data set, we verifies our method, and the experiment demonstrates that the method we propose can correctly fred out the correlation among multi-faceted meas- urement data.
To support quality of service (QoS) management on current Internet working with best effort,we bring forth a systematic approach for end-to-end QoS diagnosis and quantitative guarantee. For QoS diagnosis,we take contexts of a service into consideration in a comprehensive way that is realized by exploiting causal relationships between a QoS metric and its contexts with the help of Bayesian network (BN) structure learning. Context discretization algorithm and node ordering algorithm are proposed to facilitate BN structure learning. The QoS metric is diagnosed to be causally related to its causal contexts,and the QoS metric can be quantitatively guaranteed by its causal contexts. For quantitative QoS guarantee,those causal relationships are first modeled quantitatively by BN parameter learning. Then,the QoS metric is guaranteed to certain value with a probability given its causal contexts tuned to suitable values,that is,quantitative QoS guarantee is reached. Simulations with three sequential stages:context discretization,QoS diagnosis and quantitative QoS guarantee,on a peer-to-peer (P2P) network,are discussed and our approach is validated to be effective.
LIN Xiang-tao,CHNEG Bo,CHEN Jun-liang,QIAO Xiu-quan State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
A systematic approach for end-to-end QoS qualitative diagnosis and quantitative guarantee is proposed to support quality of service (QoS) management on current Internet. An automatic unwatched discretization algorithm for discretizing continuous numeric-values is brought forth to reshape these QoS metrics and contexts into their discrete forms. For QoS qualitative diagnosis, causal relationships between a QoS metric and its contexts are exploited with K2 Bayesian network (BN) structure learning by treating QoS metrics and contexts as BN nodes. A QoS metric node is qualitatively diagnosed to be causally related to its parent context nodes. To guarantee QoS quantitatively, those causal relationships are next modeled quantitatively by BN parameter learning. Then, BN inference can be carried out on the BN. Finally, the QoS metric is guaranteed to a specific value with certain probability by tuning its causal contexts to suitable values suggested by the BN inference. Our approach is validated to be sound and effective by simulations on a peer-to-peer (P2P) network.