Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region were studied experimentally and theoretically,which revealed that the SERRS enhancement factor was as high as 6 orders.
In this paper,we studied the pH dependent plasmon-driven surface-catalysis(PDSC) reactions of p,p'-dimercaptoazobenzene(DMAB) produced from para-aminothiophenol(PATP) and 4-nitrobenzenethiol(4NBT) both theoretically and experimentally.The surface enhanced Raman spectrum(SERS) of DMAB produced from PATP and 4NBT on Ag films in solutions with various pH values has been measured.The simulation and experimental results indicated that the pH dependence of PATP appeared in acidic environment and came from the amino group NH2.Furthermore,the ratio of intensity of Raman peak caused by PATP and DMAB indicated that this acidic sensor had higher pH sensitivity when it was excited by photons of higher energy.
A Ln^(3+)-doped(Yb^(3+),Tm^(3+)or Yb^(3+),Er^(3+)co-doped)NaYF4 nanoparticle/polystyrene hybrid fibrous membrane(HFM)was fabricated using an electrospinning technique.The HFM shows upconversion luminescence(UCL),flexibility,superhydrophobicity and processability.The UCL membrane can be used as a fluorescence sensor to detect bioinformation from a single water droplet(~10μl).Based on the fluorescence resonance energy transfer,the detection limits of this sensor can reach 1 and 10 ppb for the biomolecule,avidin,and the dye molecule,Rhodamine B,respectively,which are superior to most of the fluorescence sensors reported in previous works.After the fluorescence detection,the target droplet was easily removed without residues on the UCL membrane surface due to its superhydrophobic property,which exhibits an excellent recyclability that cannot be achieved by traditional liquid-based detection systems.