您的位置: 专家智库 > >

国家重点基础研究发展计划(2011CBA00301)

作品数:3 被引量:4H指数:1
相关作者:付荣更多>>
相关机构:清华大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 2篇理学
  • 1篇自动化与计算...

主题

  • 1篇信道
  • 1篇智能卡
  • 1篇加密
  • 1篇加密算法
  • 1篇功耗
  • 1篇功耗分析
  • 1篇分组加密
  • 1篇分组加密算法
  • 1篇REGIME
  • 1篇SPIN
  • 1篇STOCHA...
  • 1篇BATH
  • 1篇INTERA...
  • 1篇侧信道攻击
  • 1篇LO
  • 1篇ARBITR...

机构

  • 1篇清华大学

作者

  • 1篇付荣

传媒

  • 1篇计算机应用
  • 1篇Scienc...
  • 1篇Journa...

年份

  • 1篇2016
  • 1篇2015
  • 1篇2014
3 条 记 录,以下是 1-3
排序方式:
基于智能卡实现的分组加密算法的功耗分析被引量:1
2015年
针对基于智能卡硬件实现的SM4分组加密算法的物理泄露安全问题,提出了一种快速、高效的相关功耗分析方法,通过理论分析和实验研究,暴露了即使是理论上非常安全的SM4加密算法,在物理实现过程中也会泄露重要的敏感信息。首先,通过分析SM4算法的实现流程和加密特性,建立功耗分析的数学模型,并推导出解密流程和优化算法;其次,结合理论物理泄露点,搭建完整的智能卡硬件功耗分析实验系统,通过智能卡的功耗数据采集、分析、优化,研究真实智能卡的侧信道安全漏洞;最后,结合实验结果,进一步优化功耗分析,探讨嵌入式系统环境下的SM4算法安全性能。与Mifare DESFire MF3ICD40智能卡三重数据加密标准(3DES)算法侧信道分析相比,所提方法将功耗数据量从25万条降低到不足一千条,分析时间从7个多小时,减小到几分钟,并且完整地恢复了SM4的原始密钥,能有效提高硬件环境下的功耗分析效率,降低计算复杂度。
付荣
关键词:侧信道攻击
Long time evolution of a spin interacting with a spin bath in arbitrary magnetic field被引量:2
2014年
We introduce a completely different method to calculate the evolution of a spin interacting with a sufficient large spin bath,especially suitable for treating the central spin model in a quantum dot(QD).With only an approximation on the envelope of central spin,the symmetry can be exploited to reduce a huge Hilbert space which cannot be calculated with computers to many small ones which can be solved exactly.This method can be used to calculate spin-bath evolution for a spin bath containing many(say,1000)spins,without a perturbative limit such as strong magnetic field condition,and works for long-time regime with sufficient accuracy.As the spin-bath evolution can be calculated for a wide range of time and magnetic field,an optimal dynamic of spin flip-flop can be found,and more sophisticated approaches to achieve extremely high polarization of nuclear spins in a QD could be developed.
ZHAO YuKangZHAO MeiShengCHEN ZengBing
Approximation Algorithms for Stochastic Combinatorial Optimization Problems被引量:1
2016年
Stochastic optimization has established itself as a major method to handle uncertainty in various optimization problems by modeling the uncertainty by a probability distribution over possible realizations.Traditionally,the main focus in stochastic optimization has been various stochastic mathematical programming(such as linear programming,convex programming).In recent years,there has been a surge of interest in stochastic combinatorial optimization problems from the theoretical computer science community.In this article,we survey some of the recent results on various stochastic versions of classical combinatorial optimization problems.Since most problems in this domain are NP-hard(or#P-hard,or even PSPACE-hard),we focus on the results which provide polynomial time approximation algorithms with provable approximation guarantees.Our discussions are centered around a few representative problems,such as stochastic knapsack,stochastic matching,multi-armed bandit etc.We use these examples to introduce several popular stochastic models,such as the fixed-set model,2-stage stochastic optimization model,stochastic adaptive probing model etc,as well as some useful techniques for designing approximation algorithms for stochastic combinatorial optimization problems,including the linear programming relaxation approach,boosted sampling,content resolution schemes,Poisson approximation etc.We also provide some open research questions along the way.Our purpose is to provide readers a quick glimpse to the models,problems,and techniques in this area,and hopefully inspire new contributions.
Jian LiYu Liu
共1页<1>
聚类工具0