Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiewicz integral is equivalent to either of its boundedness from L1(μ)into L1,∞(μ)or from the atomic Hardy space H1(μ)into L1(μ).Moreover,we show that,if the Marcinkiewicz integral is bounded from H1(μ)into L1(μ),then it is also bounded from L∞(μ)into the space RBLO(μ)(the regularized BLO),which is a proper subset of RBMO(μ)(the regularized BMO)and,conversely,if the Marcinkiewicz integral is bounded from L∞b(μ)(the set of all L∞(μ)functions with bounded support)into the space RBMO(μ),then it is also bounded from the finite atomic Hardy space H1,∞fin(μ)into L1(μ).These results essentially improve the known results even for non-doubling measures.