Acting as an important driving force for the change of the regional land use,the change of industrial structure also has some influences on the ecological environment.The assessment and mechanism analysis of these influences will be beneficial to the sustainable development of regional economy and the im- provement of relationships between man and earth.Taking Chuzhou City in Anhui Province as an example,on the basis of a qualitative analysis of the influence of the development of differ- ent industry on the regional ecological environment,this paper builds the influence factor of industrial structure on natural envi- ronment and the influence index of industrial structure on natural environment,makes a quantitative assessment of the change of the industrial structure and its comprehensive influences on the eco- logical environment in the Chuzhou City from 1974 to 1995. Studies show that,during the analysed period,Chuzhou City's industrial structure has changed markedly,having undergone two transformations.The influence of industrial structure on natural environment from 1974 to 1995 increased as a whole,while from 1996 to 2004,the influence of industrial structure on natural en- vironment decreased year-on-year.These changes indicate that the regional change of industrial structure results in better ecological effects.Finally,we propose appropriate regulatory measures ac- cording to our research results.
Fractionation of metals in acid sandy loam soil amended withalkaline-stabilised sewage sludge biosolids was conducted in order toassess metal bioavailability and environmental mobility. Soilsolution was extracted by a centrifugation and filtration technique.Meal speciation in the soil solution was determined by a cationexchange resin method. Acetic acid and EDTA extracting solutions wereused for extraction of metals in soil solid surfaces. Metaldistribution in different fractions of soil solid phase wasdetermined using a three-step sequential extraction scheme.
LUO YONGMINGInstitute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 (China)
The adsorption of methylene blue (MB) on three soil amendments,red mud from Hungary, rd mud from UK and beringite from Belgium, wasstudied to determine the surface areas of the amendments using a0.005 mol L^-1 NaCl solution and deionised water as backgroundsolutions. The surface areas determined by the methylene blue methodin the 0.005 mol L^-1 NaCl solution were 3.357, 2.340 and 5.576 m^2g^-1 for red mud (Hungary), red mud (UK) and beringite, respectively,slightly lower than those in the deionised water system.
ZHANG GANGYA, LUO YONGMING and DENG XIHAIInstitute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 (China)
A pot experiment was catried out to study alleviation of soil acidity and Al toxicity by applying analkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acidsandy loam (pH 4.5). Barley (Hondeum vulgare L. cv. Forrester) was used as a test crop and was grownin the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that thealka1ine biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandyloam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil andfrom 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yieldincreased greatly in the amended treatments compared with the unamended controls. These observationsindicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity instrongly acid soils by increasing soil pH and lowering Al bioavailability.
Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the 137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.