Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively.
Internal solitary waves (ISWs) are frequently observed in the area between Dongsha Island (DI) and Taiwan Island. However, there have been few in-situ observations southwest of DI. To improve our knowledge of ISWs in this area, we observed the ISWs over the continental shelf (115.4°E, 20.3°N) from Aug. 29 to Oct. 10, 2011 with temperature sensors and an acoustic Doppler current profiler (ADCP). The observations showed that the a fully developed ISW produced a current whose maximum westward velocity was 0.92 rrds and maximum northward velocity was 0.47 m/s. During the 41-day observation period the ISWs appeared for three periods with about 7-day gaps between each period. During each day, two types of ISWs were observed. The first type of wave arrived regularly diurnally at the same time each day, with a similar pattern to that of the type-a wave identified by Ramp et al. (2004). The second type arrived about 12 h after the first type and was delayed about 1 hour each day; this wave type was related to the type-b wave. Thus, our observations confirmed that both type-a and type-b waves can reach the area southwest of the DI. Moreover, the waves observed by the mooring propagated toward the directions of 270°-315° clockwise from true north, indicating obvious refraction from uneven topography around DI.