Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.