您的位置: 专家智库 > >

中国博士后科学基金(2011M500611)

作品数:2 被引量:7H指数:2
相关作者:张博田剑辉鲁慧民更多>>
相关机构:长春工业大学吉林大学更多>>
发文基金:中国博士后科学基金国家自然科学基金吉林省教育科学“十二五”规划课题更多>>
相关领域:自动化与计算机技术电子电信更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇自动化与计算...
  • 1篇电子电信

主题

  • 1篇信息处理
  • 1篇信息认知
  • 1篇智能信息
  • 1篇智能信息处理
  • 1篇物联网
  • 1篇联网
  • 1篇脑认知
  • 1篇ROUGH_...
  • 1篇DATA_F...
  • 1篇EFFICI...
  • 1篇INTERN...
  • 1篇IOT
  • 1篇MULTID...

机构

  • 1篇长春工业大学
  • 1篇吉林大学

作者

  • 1篇鲁慧民
  • 1篇田剑辉
  • 1篇张博

传媒

  • 1篇东北师大学报...
  • 1篇Tsingh...

年份

  • 2篇2013
2 条 记 录,以下是 1-2
排序方式:
基于脑认知的物联网信息演化机理研究被引量:4
2013年
借助于脑认知理论,模拟、借鉴和利用人脑信息处理过程,分析了物联网数据循环的演变规律.构建了物联网信息智能处理体系结构,概括了基于脑认知的物联网信息演化过程,定义了信息感觉、关联组织、信息感知、行为估计、情境嵌入、信息认知和决策控制,绘制了物联网信息生命周期图,阐述了物联网信息演化流程,提出基于对象图的方法对物联网进行信息建模.为物联网数据循环中信息处理的智能化开发提供理论基础,也为构建其他领域数据循环系统提供借鉴与参考.
鲁慧民张博田剑辉
关键词:物联网脑认知智能信息处理信息认知
An Efficient Multidimensional Fusion Algorithm for IoT Data Based on Partitioning被引量:3
2013年
The Internet of Things (IoT) implies a worldwide network of interconnected objects uniquely addressable, via standard communication protocols. The prevalence of IoT is bound to generate large amounts of multisource, heterogeneous, dynamic, and sparse data. However, IoT offers inconsequential practical benefits without the ability to integrate, fuse, and glean useful information from such massive amounts of data. Accordingly, preparing us for the imminent invasion of things, a tool called data fusion can be used to manipulate and manage such data in order to improve process efficiency and provide advanced intelligence. In order to determine an acceptable quality of intelligence, diverse and voluminous data have to be combined and fused. Therefore, it is imperative to improve the computational efficiency for fusing and mining multidimensional data. In this paper, we propose an efficient multidimensional fusion algorithm for IoT data based on partitioning. The basic concept involves the partitioning of dimensions (attributes), i.e., a big data set with higher dimensions can be transformed into certain number of relatively smaller data subsets that can be easily processed. Then, based on the partitioning of dimensions, the discernible matrixes of all data subsets in rough set theory are computed to obtain their core attribute sets. Furthermore, a global core attribute set can be determined. Finally, the attribute reduction and rule extraction methods are used to obtain the fusion results. By means of proving a few theorems and simulation, the correctness and effectiveness of this algorithm is illustrated.
Jin ZhouLiang HuFeng WangHuimin LuKuo Zhao
共1页<1>
聚类工具0