The SnO_2/SnO with an orthorhombic structure is a material known to be stable at high pressures and temperatures and expected to have new optical and electrical properties. The authors report a new finding of the infrared laser induced a fast photovoltaic effect arising from orthorhombic tin oxide film with an indirect band gap(~2.4 e V) which is deposited by pulsed laser deposition. The rising time of the photovoltaic signal is about 3 ns with a peak value of 4.48 mV under the pulsed laser beam with energy density 0.015 m J/mm^2. The relation between the photovoltages and laser positions along the line between two electrodes of the film is also exhibited. A possible mechanism is put forward to explain this phenomenon.All data and analyses demonstrate that the orthorhombic tin oxide with an indirect band gap could be used as a candidate for an infrared photodetector which can be operated at high pressures and temperatures.
Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from -90° to 90° , its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached -2 ns with an open-circuit photovoltage of -2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector.
This paper investigates the photovoltaic properties of miscut LiNbO3 single crystal with different thicknesses under irradiation of a 248 nm ultraviolet laser pulse with 20 ns duration without an applied bias. Nanosecond photovoltaic response is observed and faster rise time is obtained in thinner samples. In accord with the 248 nm laser duration, the full width at half maximum of the photovoltaic signals keeps a constant of ~ 20 ns. With decrease of the crystal thickness, the photovoltaic sensitivity was improved rapidly at first and then decreased, and the maximum photovoltage occurred at 0.38 mm-thick single crystal. The present results demonstrate that decreasing the LiNbO3 single crystal thickness can obtain faster response time and improve the photovoltaic sensitivity.
The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numbers were investigated using terahertz time-domain spectroscopy. Greases with different NLGL grades have unique spectral features in the terahertz range. Comparison of the experimental data with predictions based on Lorentz Lorenz theory exhibited that the refractive indices of each kind of lubricating grease were dependent on the their consistency. In addition, molybdenum disullfide (MoS2) aa a libricant additive shows strong absorption from 0.2 to 1.4 THz, leading to higher absorption of MoS2-1ithium grease than that of lithium grease.
We investigate the diffusion interaction and quantitative analysis of zinc dialkyldithiophosphate (ZDDP) mixed with lube base oil (LBO) at different concentrations using terahertz time-domain spectroscopy (THzTDS).When the concentration exceeds 6.78%,the characteristic absorption peaks exhibit significantly shift,and the absorption coefficient peak value is nonlinear against concentration.Moreover,the absorption coefficients of mixed samples follow the Beer's law at a concentration below 6.78%.The quantitative analysis enables a strategy for monitoring the formulation of lubricating oil in real time