您的位置: 专家智库 > >

国家自然科学基金(60803017)

作品数:3 被引量:3H指数:1
相关作者:陆宝森赵千川涂国煜更多>>
相关机构:康涅狄格大学清华大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:航空宇航科学技术自动化与计算机技术经济管理更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 1篇经济管理
  • 1篇自动化与计算...
  • 1篇航空宇航科学...

主题

  • 1篇机会性
  • 1篇STORAG...
  • 1篇WORKFL...
  • 1篇COVARI...
  • 1篇DISTRI...
  • 1篇GRID
  • 1篇GRID_E...
  • 1篇LAGRAN...
  • 1篇CONCUR...
  • 1篇AUTOTU...
  • 1篇AUTOTU...
  • 1篇WORKFL...

机构

  • 1篇清华大学
  • 1篇康涅狄格大学

作者

  • 1篇涂国煜
  • 1篇赵千川
  • 1篇陆宝森

传媒

  • 2篇Tsingh...
  • 1篇自动化学报

年份

  • 1篇2013
  • 1篇2011
  • 1篇2010
3 条 记 录,以下是 1-3
排序方式:
联合更换策略的机会性Lagrangian松弛方法被引量:1
2013年
零部件的联合更换是通过协调不同零部件的更换决策使其尽可能共享资源以节约费用的优化问题.这类随机组合策略优化问题在实际中大量存在,对生产生活的经济性起着重要影响.由于随机因素和组合效应,其有限阶段的策略求解非常困难.本文针对飞机引擎维护中的零部件联合更换问题,利用问题中随机耦合约束的特征,给出了一个可分解的模型及相应的分解协调方法机会性Lagrangian松弛(Opportunistic Lagrangian relaxation,OLR).与现有的两种利用先验最优策略规则的方法相比,OLR方法可在无先验知识的情况下直接得到更佳的协调效果.
涂国煜陆宝森赵千川
Performance Improvement of Distributed Systems by Autotuning of the Configuration Parameters被引量:1
2011年
The performance of distributed computing systems is partially dependent on configuration parameters recorded in configuration files. Evolutionary strategies, with their ability to have a global view of the structural information, have been shown to effectively improve performance. However, most of these methods consume too much measurement time. This paper introduces an ordinal optimization based strategy combined with a back propagation neural network for autotuning of the configuration parameters. The strat- egy was first proposed in the automation community for complex manufacturing system optimization and is customized here for improving distributed system performance. The method is compared with the covariance matrix algorithm. Tests using a real distributed system with three-tier servers show that the strategy reduces the testing time by 40% on average at a reasonable performance cost.
张帆曹军威刘连臣吴澄
Concurrent and Storage-Aware Data Streaming for Data Processing Workflows in Grid Environments被引量:1
2010年
Data streaming applications, usually composed of sequential/parallel data processing tasks organized as a workflow, bring new challenges to workflow scheduling and resource allocation in grid environments. Due to the high volumes of data and relatively limited storage capability, resource allocation and data streaming have to be storage aware. Also to improve system performance, the data streaming and processing have to be concurrent. This study used a genetic algorithm (GA) for workflow scheduling, using on-line measurements and predictions with gray model (GM). On-demand data streaming is used to avoid data overflow through repertory strategies. Tests show that tasks with on-demand data streaming must be balanced to improve overall performance, to avoid system bottlenecks and backlogs of intermediate data, and to increase data throughput for the data processing workflows as a whole.
张文曹军威钟宜生刘连臣吴澄
关键词:GRIDCONCURRENTWORKFLOW
共1页<1>
聚类工具0