Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.
The purpose of this article is to model the detailed progress of wave propagation in curvilinear coordinates with an effective time-dependent mild slope equation. This was achieved in the following approach, firstly deriving the numerical model of the equation, i.e., Copeland's hyperbolic mild-slope equation, in orthogonal curvilinear coordinates based on principal of coordinate transformation, and then finding the numerical solution of the transformed model by use of the Alternative Directions Implicit (ADI) method with a space-staggered grid. To test the curvilinear model, two cases of a channel with varying cross section and a semi-circular channel were studied with corresponding analytical solutions. The model was further investigated through a numerical simulation in Ponce de Leon Inlet, USA. Good agreement is reached and therefore, the use of the present model is valid to calculate the progress of wave propagation in areas with curved shorelines, nearshore breakwaters and other complicated geometries.