ZnO nanoparticles films were prepared via sol-gel process and incorporated into inverted organic photovoltaic devices with a structure of ITO/ZnO/P3HT:PCBM/MoO3/Ag, in which ZnO film served as an electron selective layer. The effects of annealing temperature of ZnO film on the device performance were investigated. When the annealing temperature was 300℃, a well-arranged ZnO thin film was obtained, and the optimized device had doubled short circuit current density (Jsc) and seven-fold higher power conversion efficiency (PCE) compared to the devices without ZnO film. This improvement could be attributed to the enlarged interfacial area of ZnO/active layer and better energy band matching which causes an efficient electron extraction and a decreased interface energy barrier. At particularly high annealing temperature, dramatically increased sheet resistance of indium tin oxide (ITO) was found to cause PCE deterioration. Our finding indicates that it is highly important to investigate both morphology and electrical effects for understanding and optimizing organic photovoltaic (OPV) performance.
制备了一种有机铅卤钙钛矿-有机本体异质结杂化串联太阳能电池。采用紫外可见吸收光谱、原子力显微镜对薄膜形貌进行了表征。结果表明:有机本体异质结层可以有效改善钙钛矿的表面形貌,增强了可见光的吸收。优化后的串联结构电池的短路电流可达19.14 m A/cm2,开路电压为0.76 V,光电转换效率达到了6.54%。钙钛矿电池和有机本体异质结电池串联结构可以同时提高短路电流及填充因子,二者具有较好的相容性和协同作用。