A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.
A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
Stable switch control between multiple cameras for uncalibrated visual servoing was studied. Switch images based on fusion were presented to get the continuous dynamic image Jacobian matrix among robots and distributed visual sensors. The designed fusion algorithm is suitable to have dynamically adjustable fusion weights, and the fusion structure was analyzed. Simulations and experiments without any knowledge of mobile robots and uncalibrated visual sensors show that the method has higher adaptability than the traditional instant switch control method. The method can enhance the system stability at the switching process.
This paper proposes a new coordination method for multi-robot system.The state space for a multi-robot system is constructed according to the task requirements and system characteristics.Reachable statefor the system is constrained by the system s internal and external constraints,under which the task isexecutable if there exists a state transition trajectory from the initial to the goal state in its state space.Ifthe task is realizable,the feasible or the optimal strategy for task execution could then be investigated inthe state space.Otherwise,the task could be modified to be realizable via adjusting system s configura-tions and/or task constraints,which provides critical guidance for system reconstructions.This con-tributes to the designing and planning of the robotic tasks.Experiments of multi-robot formation movementare conducted to show the validity of the proposed method.