First a description of 2+1 dimensional non-commutative(NC) phase space is presented,and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space.
The Fock-Darwin system is studied in noncommutative quantum mechanics. We not only obtain its energy eigenvalues and eigenstates in noncommutative phase space, but also give an electron orbit description as well as the general expressions of the magnetization and the susceptibility in a noncommutative situation. Further, we discuss two particular cases of temperature and present some interesting results different from those obtained from usual quantum mechanics such as the susceptibility dependent on a magnetic field at high temperatures, the occurrence of the magnetization in a zero magnetic field and zero temperature limit, and so on.