The factors influencing the state and wetting transition of droplets on a rough surface are both complex and obscure. The change in wetting is directly reflected by changes under the contact condition of the droplets with the surface. The recent study about the wettability of the superhydrophobic surface under the condensing condition arouses the new understanding about the apparent state of droplets on a rough surface. In this work, to validate the existence of droplets in an intermediate state, a microscale pillar topological polydimethylsiloxane (PDMS) surface was manufactured and its wettability under various conditions was studied. According to the experimental data, it is proposed that the wetting state of a rough surface may be embodied using the contact area ratio of a solid/liquid/gas droplet with the projective plane. A general calculation model for the apparent contact angle of droplets is given and expressed diagrammatically. It is found that the measured apparent contact angles of droplets at dif- ferent states on the surface falls within the range predicted by our proposed equation.
为了研究超疏水表面形貌结构对其流动减阻的影响,设计了4种不同形貌的表面结构.针对超疏水表面的流动特点,建立微通道气-液两相流动的VOF(Volume of Fluid)模型,对超疏水表面在层流状态下的表面形貌结构对流动减阻的影响规律进行了研究.结果表明,超疏水表面的减阻效果随微凸起间距的增大而明显增大,而与微凸起高度的变化关系不大,且三角形和圆顶矩形微凸起结构表面比圆形和平顶矩形微凸起结构表面具有更好的减阻效果.