We investigated the effect of low temperature annealing on magnetic anisotropy in 7-nm ultrathin Ga0.94Mn0.06As devices by measuring the angle-dependent planar Hall resistance(PHR).Obvious hysteresis loops were observed during the magnetization reversal through the clockwise and counterclockwise rotations under low magnetic fields(below 1000 Gs,1 Gs = 10-4 T),which can be explained by competition between Zeeman energy and magnetic anisotropic energy.It is found that the uniaxial anisotropy is dominant in the whole measured ferromagnetic range for both the as-grown ultrathin Ga0.94Mn0.06As and the annealed one.The cubic anisotropy changes more than the uniaxial anisotropy in the measured temperature ranges after annealing.This gives a useful way to tune the magnetic anisotropy of ultrathin(Ga,Mn)As devices.
We carefully investigated the ferromagnetic coupling in the as-grown and annealed ferromagnetic semiconductor GaMnAs/A1GaMnAs bilayer devices. We observed that the magnetic interaction between the two layers strongly affects the magnetoresistance of the GaMnAs layer with applying the out of plane magnetic field. After low temperature annealing, the magnetic easy axis of the A1GaMnAs layer switches from out of plane into in-plane and the interlayer coupling efficiency is reduced from up to 0.6 to less than 0.4. However, the magnetic coupling penetration depth for the annealed device is twice that of the as-grown bilayer device.
CAO YuFeiLI YanYongLI YuanYuanWEI GuanNanJI YangWANG KaiYou