In this article, we prove a degeneracy theorem for three linearly non-degenerate meromorphic mappings from Cn into PN (C), sharing 2N + 2 hyperplanes in general position, counted with multiplicities truncated by 2.
The authors give an upper bound of the essential norm of a composition operator on H2(Bn),which involves the counting function in the higher dimensional value distribution theory defined by S.S.Chern.A criterion is also given to assure that the composition operator on H2(Bn) is bounded or compact.
In this paper,a uniqueness theorem for meromorphic mappings partially sharing 2N+3 hyperplanes is proved.For a meromorphic mapping f and a hyperplane H,set E(H,f) = {z|ν(f,H)(z) > 0}.Let f and g be two linearly non-degenerate meromorphic mappings and {Hj}j2=N1+ 3be 2N + 3 hyperplanes in general position such that dim f-1(Hi) ∩ f-1(Hj) n-2 for i = j.Assume that E(Hj,f) E(Hj,g) for each j with 1 j 2N +3 and f = g on j2=N1+ 3f-1(Hj).If liminfr→+∞ 2j=N1+ 3N(1f,Hj)(r) j2=N1+ 3N(1g,Hj)(r) > NN+1,then f ≡ g.
In this paper, we establish a Second Main Theorem for an algebraically degenerate holomorphic curve f : C → Pn(C) intersecting hypersurfaces in general position. The related Diophantine problems are also considered.