利用卫星数据遥感陆地气溶胶一直是国际上研究的难点与热点.利用新一代传感器MODIS(中分辨率成像光谱仪)数据,DDV(Dark Dense Vegetation)算法反演陆地气溶胶的分布以及性质已经取得了较好的效果.然而,该算法只适用于诸如水体、浓密植被等较低地表反射率区域,大大限制了该算法的实际应用范围,尤其是无法应用于城市等亮地表区域气溶胶的遥感反演.文中提出了基于利用TERRA和AQUA双星MODIS数据的协同反演模型算法(SYNTAM-Synergy of Terra and Aqua MODIS),用以反演陆地气溶胶的光学厚度等信息.该算法实现了地表反射率与气溶胶光学厚度的同时反演,可应用于各种地表反射率类型,包括城市等亮地表区域.通过与国际AERONET的地面观测数据对比做初步的反演验证,结果表明,该算法具有较高的精度,进一步的验证工作还在继续.
Aerosol retrieval over land from satellite remotely sensed data remains internationally a difficult task. By using MODIS data, the Dark Dense Vegetation (DDV) algorithm aerosol distribution and properties retrieval over land has shown excellent competence. However, this algorithm is re-stricted to lower surface reflectance such as water bodies and dense vegetation, which limits its actual application, and is unable to be used for high reflective surface such as over urban areas. In this paper, we introduce a new aerosol retrieval model by exploiting the Synergy of TERRA and AQUA MODIS data (SYNTAM), which can be used for various ground surfaces, including for high reflective surface. Preliminary validations have been carried out by comparing with AERONET measured data, which shows good accuracy and promising potential. Further research work is undergoing.
TANG Jiakui1, XUE Yong1,2, YU Tong3, GUAN Yanning1, CAI Guoyin1 & HU Yincui1 1. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101, China