Effect of uniaxial compression on the nucleation of micro-damage in cement mortar under sulfate attack is investigated. Shape and size of micro-voids in cement mortar is detected using Micro Computed Tomography techniques. The formation of delayed ettringite crystal is analyzed using scanning electron microscope and energy disperse spectrum methods. Deformation of micro-voids and the distribution of stress at the surface of a micro-void are calculated. It is found that the nucleation of micro-cracks is caused by the tensile stress at the voids' surface, and such damage nucleation will be speeded up by the remote uniaxial compressive load.
Experimental results about concrete under sulfate attack are summarized, which include the variation of mass density of samples and velocity of ultrasonic wave propagating in samples. The evolution damage is analyzed in terms of the experimental results, and close attention is paid to the effect of damage evolution on Poisson's ratio. This study shows that Poisson's ratio is significantly affected by the concentration of solution and water-cement ratio. Poisson's ratio of concrete changes very little when the water-cement ratio is selected as 0.6 or 0.8, so that such change may be neglected. If water-cement is 0.4, however, the Poisson's ratio of the sample significantly changes. When the concrete sample of 0.4 water-cement ratio is immersed in sodium sulfate solution of 8% concentration for 285 days, Poisson's ratio increase 10.14% compared with its initial value. There exist a sensitive region and a non-sensitive region for the change rate of Poisson's ratio with respect to corrosion time. The change rate of Poisson's ratio monotonously decreases with corrosion time in the sensitive region; in the non-sensitive region, the change rate of Poisson's ratio is almost equal to zero.