In order to study the water-inrush mechanism of concealed collapse pillars from the mechanical view, a mechanical model for water-inrush of collapse pillars has been established based on thick plate theory of elastic mechanics in this paper.By solving this model the deformation of water-resistant rock strata under the action of water pressure and the expression of critical water pressure for collapse pillar waterinrush have been obtained The research results indicate that:the boundary conditions and strength of water-resistant strata play important roles in influencing water-inrush of collapse pillars.The critical water-inrush pressure is determined by both relative thickness and absolute thickness of water-resistant strata.
Water-inrush in mine is one of the mine disasters caused by mining.In order to assess the risk of roof water-inrush in Wuyang Coal Mine based on the geological material of the coal mine,we built numerical models for the roof fracture and seepage development rule by using RFPA2D and COMSOL respectively,to analyze the changes in fracture zone,stress,water pressure and seepage vector with the advancement of working face,and compared the results with the field investigated data.The numerical simulation results indicate that:(1) with the advancement of the working faces,the stress relief range and fracture zone in the overlying strata increased rapidly up to about 90 m,and then tended to remain constant,reaching a final height of about 95 m which agrees with the field investigation;(2) the seepage flow constantly increased with a larger flow volume both in the front and rear area,where the stress concentration are the most serious.