The actin cytoskeleton is an important component of eukaryotic cell cytoskeleton and is temporally and spatially controlled by a series of actin binding proteins (ABPs). Among ABPs, formin family proteins have attracted much attention as they can nucleate unbranched actin filament from the profilin bound actin pool in vivo. In recent years, a number of formin family members from different organisms have been reported, and their characteristics are known more clearly, although some questions are still to be clarified. Here, we summarize the structures, func-tions and nucleation mechanisms of different formin family proteins, intending to compare them and give some new clues to the study of formins.
Phosphorous is one of the essential mineral elements for plant growth and development.Typically, the shoots of plant seedlings usually turn a dark-brown or purple colour under low-Pi stress. Using protein 2-D gel and peptide mass fingerprinting mapping (PMF) methods, a cytoplasmic glyceralde-hyde-3-phosphate dehydrogenase GapC-2 was identified as a low-Pi responsive protein in Arabidopsisplants. Expression of AtGapC-2 protein was significantly decreased after 4 d of low-Pi stress. Two in-dependent T-DNA insertion lines of GapC-2 gene (At1g13440) showed a hypersensitive phenotype inresponse to low-Pi stress compared with wild type plants, while the transgenic complementation linesof the mutants showed a similar phenotype to the wild type. These results indicate that AtGapC-2 mayplay an important role in Arabidopsis responses to low-Pi stress, possibly by regulation of glycoly-sis-associated "Pi-pool" and accumulation of anthocyanin pigments in plants.
Aquaporins are implicated in a wide variety of plant physiological processes, although the mechanisms involved in their regulation are not fully understood. To gain further insight into the regulatory factors involved in this process, we used a yeast two-hybrid system to screen for potential binding partners to the Arabidopsis tonoplast intrinsic protein (TIP) AtTIP1;1. This was the first protein identified to be associated with high water permeability in vacuolar membranes from Arabidopsis thaliana. Using AtTIP1;1 as bait, a novel binding protein was identified in both yeast and plant cells. This prey protein, named AtSM34, was a 309 aa polypeptide with a predicted molecular mass of 34 kD and contained a single MYB/SANT-like domain. AtSM34 promoter:: GUS histochemical staining analysis detected AtSM34 expression in flowers, stems and leaves, particularly in the vascular tissues, in response to osmotic stress. AtSM34 expression was localized in the endoplasmic reticulum membrane, and sequence deletion analysis revealed that the N-terminal coding region (amino acids 1-83) was critical for this localization. Overexpression of AtSM34 resulted in hypersensitivity to exogenous mannitol, sorbitol and abscisic acid, and caused a significant delay in germination. AtSM34 interacted with AtTIP1;2 and AtTIP2;1, which are essential proteins for modulation of tonoplast permeability and highly expressed in germinating seedlings. These data indicate AtSM34 is a novel TIPs binding protein involved in the osmotic stress response of seedlings at an early stage of development.
LI LiJuanREN FeiWEI PengChengCHEN QiJunCHEN JiaWANG XueChen