您的位置: 专家智库 > >

国家自然科学基金(50501011)

作品数:3 被引量:0H指数:0
发文基金:国家自然科学基金更多>>
相关领域:金属学及工艺一般工业技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇金属学及工艺
  • 1篇一般工业技术

主题

  • 3篇XPS
  • 3篇CORROS...
  • 2篇AES
  • 2篇CORROS...
  • 2篇IMPLAN...
  • 1篇TEM
  • 1篇ALLOY
  • 1篇IRRADI...
  • 1篇ZIRCAL...
  • 1篇BOMBAR...
  • 1篇ZIRCAL...

传媒

  • 2篇Journa...
  • 1篇Journa...

年份

  • 1篇2008
  • 1篇2007
  • 1篇2006
3 条 记 录,以下是 1-3
排序方式:
Influence of Aluminum Ions Implantation on Corrosion Behavior of Zircaloy-2 Alloy in 1 M H_2SO_4
2007年
The specimens were implanted with aluminum ions with fluence ranging from 1× 10^16 to 1× 10^17 ions/cm^2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Transmission electron microscopy (TEM) was used to examine the microstructure of the aluminum-implanted samples. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the aluminum ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-2 in a 1 M H2SO4 solution. It is found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-2 implanted with aluminum ions. Finally, the mechanism of the corrosion behavior of aluminum- implanted zircaloy-2 was discussed.
彭德全
Irradiation damage simulation of Zircaloy-4 using argon ions bombardment
2008年
To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1 × 10^16 to 1 × 10^17 cm^-2, using accelerating implanter at an extraction voltage of 190 kV and liquid nitrogen temperature. Then the influence of argon ion implantation on the aqueous corrosion behavior of Zircaloy-4 was studied. The valence states of elements in the surface layer of the samples were analyzed using X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted Zircaloy-4 in 1 mol/L HzSO4 solution. It is found that there appear bubbles on the surface of the samples when the argon fluence is 1 × 10^16 cm^-2. The microstructure of argon-implanted samples changes from amorphous to partial amorphous, then to polycrystalline, and again to amorphous. The corrosion resistance of implanted samples linearly declines with the increase of fluence approximately, which is attributed to the linear increase of the irradiation damage.
Dequan Peng Xinde Bai Feng Pan
关键词:ZIRCALOY-4
Effect of copper ions implantation on the corrosion behavior of ZIRLO alloy in 1 mol/L H_2SO_4
2006年
In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from 1×10^16 to 1×10^ ions/cm^2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV, The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potcntiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a 1 mol/L H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×10^16 ions/cm^2. When the fluence is 1×10^16 or 1×10^17 ions/cm^2, the corrosion resistance of implanted sanaples was bad. Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.
Dequan PengXinde BaiBaoshan Chen
共1页<1>
聚类工具0