High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,
Three Bi2Sr2Co2Oy thin films with different microstructures have been prepared by chemical solution deposition on LaAlO 3(001) through varying the annealing temperature.With the decrease in the annealing temperature,both the size and c-axis alignment degree of grains in the film decrease as well,leading to an increase in the film resistivity.In addition,the decrease in the annealing temperature also results in a slight increase in the Seebeck coefficient due to the enhanced energy filtering effect of the small-grain film.The nanostructured Bi2Sr2Co2Oy film with an average grain size of about 100 nm shows a power factor comparable to that of films with larger grains.Since the thermal conductivity of the nanostructured films can be depressed due to the enhanced phonon scattering by grain boundary,a higher figure of merit is expected in Bi2Sr2Co2Oy thin film with grains in nanometer size.