Titanium dioxide with CoB amorphous alloys nanoparticles deposited on the surface is known to exhibit higher catalytic activity than the CoB amorphous.A study of the structure of such system is necessary to understand this effect.A quantum chemical study of Co2B2 on the TiO2(110) surface was studied using periodic slab model within the framework of density functional theory(DFT).The results of geometry optimization indicated that the most stable model of adsorption was Co2B2 cluster adsorbed on the hollow site of TiO2 .The adsorption energy calculated for Co2B2 on the hollow site was 439.3 kJ/mol.The adsorption of CO and O2 was further studied and the results indicated that CO and O2 are preferred to adsorb on the Co2 site.Co-adsorption of CO and O2 shows that Co2B2 /TiO2 is a good catalyst for the oxidation of CO to carbon dioxide in the presence of oxygen.
First-principles calculations based on density functional theory (DFT) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the perfect and defective FeS 2 (100) surfaces. The defective Fe 2 S(100) surfaces are caused by sulfur deficiencies. Slab geometry and periodic boundary conditions are employed with partial relaxations of atom positions in calculations. Two molecular orientations, Cand O-down, at various distinct sites have been considered. Total energy calculations indicated that no matter on perfect or deficient surfaces, the Fe position is relatively more favored than the S site with the predicted binding energies of 120.8 kJ/mol and 140.8 kJ/mol, respectively. Moreover, CO was found to be bound to Fe atom in vertical configuration. The analysis of density of states and vibrational frequencies before and after adsorption showed clear changes of the C–O bond.
The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model. Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+. Using the calculated local structures, we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method. The calculated crystal-field parameters were analyzed and compared with the fitted results.