Automatic weld seam tracking technology to be used in hyperbaric underwater damaged pipeline repair welding is much more important, because of poor bevel preparation and severe working condition. A weld seam tracking system based on digital signal processing(DSP) passive light weld image processing technology has been established. A convenient charge coupled device(CCD) camera system was used in the high pressure environment with the help of an aperture and focus altering mechanism to guarantee overall image visibility in the scope of pressure below 0.7 MPa. The system can be used in the hyperbaric environment to pick up the real welding image of both the welding arc and the welding pool. The newly developed DSP technology was adopted to achieve the goal of system real time characteristics. An effective weld groove edge recognition technique including narrow interesting window opening, middle value wave filtering, Sobel operator weld edge detecting and edge searching in a defined narrow area was proposed to remove the guide error and system accuracy was ensured. The results of tracking simulation and real tracking application with arc striking have proved the validity and the accuracy of the mentioned system and the image processing method.
The research of gas shielding stability technology, playing a key role in underwater local dry welding, was introduced in this paper. The study includes shielding cup design, gas flow simulation, draining and welding experiments. The commercial computational fluid dynamics ( CFD ) software FLUENT was applied to get and compare the speed and pressure contour images of gas in the three kinds of cup with different intake mode. The computed results show that the cup with stilling chamber on the top has the best shielding performance. The underwater welding experiment of 15 meters proves that the shielding cup with stilling chamber can offer a good dry space, the welding arc can burn stably in it and the weld quality is perfect. The research will facilitate the application of underwater local dry welding technology in the maintenance of nuclear power station widely.