The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test
Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firstly,the mechanical parameters of each rock group were identified from the experimental data; secondly,the rheological calculation and analysis for the cavern in stepped excavation without supporting were made; finally,the optimal time for supporting at the characteristic point in a typical section was obtained while the creep rate and displacement after each excavation step has satisfied the criterion of the optimal supporting time. Excavation was repeated when the optimal time for supporting was identified,and the long-term stability creep time and the maximum creep deformation of the characteristic point were determined in accordance with the criterion of long-term stability index. It is shown that the optimal supporting time of the characteristic point in the underground plant of Xiangjiaba hydro-power station is 5-8 d,the long-term stability time of the typical section is 126 d,and the corresponding largest creep deformation is 24.30 mm. While the cavern is supported,the cavern deformation is significantly reduced and the stress states of the surrounding rock masses are remarkably improved.
From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the AUTOCAD model into 3DEC (3-dimensional distinct element code) model was developed, and a numerical model was established in 3DEC. Moreover, the results of triaxial compression tests of columnar jointed rock masses were simulated numerically. The REV (representative element volume) scale was studied, and the result shows that the REV size is 3 m × 3 m. The proposed approach, the established model and the numerical simulation were applied to study the macro-mechanical properties and the equivalent strength parameters of the columnar jointed rock mass. The numerical simulation results are in good accordance with the in-situ test results.
Irregular columnar jointed structure is a primary irregular columnar morphological tensile fracture. In order to study the geometric features of irregular columnar joints and the new problems in geotechnical engineering, hydraulic and hydropower engineering caused by columnar jointed basaltic mass, Voronoi graph from geometry was introduced to simulate the irregular columnar jointed basaltic mass at Baihetan hydraulic station. Discrete element software UDEC was used to simulate the whole process of rigid bearing plate test. Anisotropic constitutive of columnar joints was adopted to analyze the stress diffusion of rock mass at dam base of Baihetan. The results show that, the compaction property and hysteresis effect are well simulated based on discrete element simulation of Voronoi joint structure by UDEC. Four stages of cyclic loading and unloading process are imaged clearly. The results from in situ rigid bearing plate tests are explicated and the stress diffusion rule of anisotropic body is affected by structure surface. The elements in the stress state of 4-5 MPa are the most, about more than 35% of the total. Appropriate constitutive must be proposed to columnar jointed rock mass with different styles. It has important significance to realize the nonlinear mechanical behavior of irregular columnar jointed basaltic mass.