A new catalyst for methanol synthesis, ZnO-promoted rhodium supported on carbon nanotubes, was developed. It was found that the Rh-ZnO/CNTs catalyst had high activity of 411.4 mg CH3OH/g/cat/h and selectivity of 96.7 % for methanol at 1 MPa and 523 K. The activity of this catalyst is much higher than that of NC 207 catalyst at the same reaction conditions. It was suggested that the multi-walled structure CNTs favored both the couple transfer of the proton and electron over the surface of the catalyst and the uptake of hydrogen which was favorable to methanol synthesis.
A novel ammonia synthesis catalyst, potassium-promoted ruthenium supported on carbon nanotubes, was developed. It was found that the Ru-K/carbon nanotubes catalyst had higher activity for ammonia synthesis (20.85 ml NH3/h/g-cat) than the Ru-K/fullerenes ( 13.3 ml NH3/h/g-cat) at atmospheric pressure and 623 K. The catalyst had activity even at 473 K, and had the highest activity( 23.46 ml NH3/h/g-cat) at 643 K. It was suggested that the multi-walled structure favored the electron transfer, the hydrogen-storage and the hydrogen-spill which were favorable to ammonia synthesis.