A fully digital beam position monitoring system(DBPM) has been designed for SSRF(Shanghai Synchrotron Radiation Facility). As analog-to-digital converter(ADC) is a crucial part in the DBPM system, the sampling methods should be studied to achieve optimum performance. Different sampling modes were used and compared through tests. Long term variation among four sampling channels, which would introduce errors in beam position measurement, is investigated. An interleaved distribution scheme was designed to address this issue. To evaluate the sampling methods, in-beam tests were conducted in SSRF. Test results indicate that with proper sampling methods, a turn-by-turn(TBT) position resolution better than 1 μm is achieved, and the slow-acquisition(SA) position resolution is improved from 4.28 μm to 0.17 μm.
We first clarify timing issues of non-uniform sampling intervals regarding a 5 GS/s fast pulse sampling module with DRS4. A calibration strategy is proposed, and as a result, the waveform timing performance is improved to below 10 ps RMS. We then further evaluate waveform-timing performance of the module by comparing with a 10 GS/s oscilloscope in a setup with plastic scintillators and fast PMTs. Different waveform timing algorithms are employed for analysis, and the module shows comparable timing performance with that of the oscilloscope.
Compared with traditional waveform digitization with flash-ADCs, waveform digitization with switched-capacitor arrays (SCAs) is able to achieve the sampling speed above 1 GS/s without degrading the analog to digital conversion precision significantly. In this paper, we present the implementation of a fast waveform digitization system with the use of SCAs, and evaluate its performance of waveform digitization and the waveform timing. At about 5 GS/s, the dynamic input range of the digitizer is about 66 dB, and its timing precision is about 20 ps (RMS).
Time interleaved analog-to-digital conversion (TIADC) based on parallelism is an effective way to meet the requirement of the ultra-fast waveform digitizer beyond Gsps. Different methods to correct the mismatch errors among different analog-to-digital conversion channels have been developed previously. To overcome the speed limi- tation in hardware design and to implement the mismatch correction algorithm in real time, this paper proposes a fully parallel correction algorithm. A 12-bit l-Gsps waveform digitizer with ENOB around 10.5 bit from 5 MHz to 200 MHz is implemented based on the real-time correction algorithm.