尿液是市政污水中氮、磷与COD的主要来源,将尿液从污水系统中分离单独处理可以缓解城市污水处理厂有机物、营养素的超负荷难题.以源分离的尿液为底物,研究微生物燃料电池的产电特征及其污染物去除效果,并进一步考察影响系统产电性能的因素.结果显示:在超过6个月的试验过程中,伴随有机物和总氮的减少,系统可保持长期稳定的功率输出.COD和总氮的最高去除率为92.9%和65.6%,系统最大输出功率为388.2 m W/m2,这也是迄今尿液微生物燃料电池所获得的最高功率.阳极碳毡表面菌群分析显示具有电化学活性的Arcobacter和具有发酵功能的Bacteroides为优势菌群.氨氮积累、微生物淤积以及尿液中的物质沉淀等是影响尿液微生物燃料电池性能的主要因素.研究结果表明,尿液微生物燃料电池高效地实现了在污染物去除的同时获得高输出功率,体系中Arcobacter是一种新型的胞外产电菌,其强电化学作用可利用在生物电能的获得过程中.
为进一步提高有机废水的厌氧处理效率,同时实现能源物质的回收,采用微生物电解池并结合连续流工艺处理有机废水并同步回收甲烷,系统地研究不同水力停留时间、有机负荷、外加电压对微生物电解池内基质浓度的降解、甲烷生产速率等方面的影响.结果表明,在同一有机负荷下,随着外加电压(0.6 V,1.0 V,1.2 V)的升高,微生物电解池COD的去除效率和甲烷生产率也同时提高.在进水COD浓度为1 178 mg L-1、水力停留时间为8 h、外加电压为1.2V的条件下,其COD去除率、甲烷浓度、甲烷产生速率分别为97.7%、96%、1 071 m L L-1 d-1,较普通厌氧发酵(对照组)分别提高了31.5%、13.6%、123%;当进水COD浓度为4 812 mg L-1、水力停留时间为20 h、外加电压为1.2 V时,甲烷的产生速率达1 888 m L L-1 d-1,达理论产率的98.0%,而此条件下对照组甲烷产生速率仅为理论值的64.9%.说明连续流微生物电解池能够明显提高有机废水的处理效率,并实现处理过程中稳定回收甲烷的目的.高通量分析结果显示:微生物电解池阳极碳毡优势菌群为methanogens与Geobacter sp.,其丰度分别占总菌群的53.3%和7.5%,而对照组碳毡相应丰度仅为25.2%和0.7%.此外,研究发现有机负荷与电解池能量的消耗呈负相关,当外加电压为0.6 V时,有机负荷由3.5 kg m-3d-1提升至5.7 kg m-3d-1时,电解池能量消耗降低了79.3%.据此认为,通过优化水力停留时间和外加电压来处理有机废水并同步生产甲烷是可行的.
以不锈钢筒作为阴极、碳毡作为阳极,阴阳极间利用无纺布作为隔膜构建单室生物电解池,以氨作为唯一电子供体,接入混合菌群,通过恒定不同的阳极电势,考察不同初始浓度氨氮在生物电解池内的氧化与产物的生成情况.结果表明,恒定阳极电势0.2 V(vs Ag/Ag Cl)时,经过5 d的运行,初始氨氮浓度200 mg/L、400 mg/L的氨氮去除率分别为30%、35%,氮气分别积累16.1 m L、17.18 m L,甲烷分别积累1.18 m L、1.46 m L;恒定阳极电势0.6 V(vs Ag/Ag Cl)时,初始氨氮浓度200 mg/L、400 mg/L,氨氮去除率分别为32.4%、36.6%,分别积累氮气16.48 m L、17.42 m L,积累甲烷1.3m L、1.52 m L,未检测到硝态氮和亚硝态氮.循环伏安扫描分析发现,阳极具有明显的氧化还原峰,且不同的阳极恒定电势,导致其氧化还原峰出现偏移.通过电镜扫描,发现阳极微生物细胞表面具有明显的褶皱形状,高通量分析显示阳极微生物中Geobacter占24.11%,是优势菌群,在阳极氨氧化过程中起到关键作用.同时发现系统中还存在氢营养型产甲烷菌Synergistes(3.8%)以及梭菌Clo stridium(3.8%)和Gordonia(1.85%)等功能微生物.本文研究表明,在生物电解池内,微生物能够以氨氮作为电子供体,通过氨氧化脱氮,并产生氢气和甲烷.
The effects of cathode potentials and initial nitrate concentrations on nitrate reduction in bio- electrochemical systems (BESs) were reported. These factors could partition nitrate reduction between denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Pseudomonas alcaliphilastrain MBR utilized an electrode as the sole electron donor and nitrate as the sole electron acceptor. When the cathode potential was set from -0.3 to -I.1 V (vs. Ag/AgC1) at an initial nitrate concentration of 100 mg NO^-N/L, the DNRA electron recovery increased from (10.76 ± 1.6)% to (35.06 ± 0.99)%; the denitrification electron recovery decreased from (63.42 ± 1,32)% to (44.33 ± 1.92)%. When the initial nitrate concentration increased from (29.09 ± 0.24) to (490.97 ± 3.49) mg NO3-N/L at the same potential (-0.9 V), denitrification electron recovery increased from (5.88 ± 1.08)% to (50.19 ±2.59)%; the DNRA electron recovery declined from (48.79 ±1.32)% to (16.02 ± 1.41)%. The prevalence of DNRA occurred at high ratios of electron donors to acceptors in the BESs and denitrification prevailed against DNRA under a lower ratio of electron donors to acceptors. These results had a potential application value of regulating the transformation of nitrate to N2 or ammonium in BESs for nitrate removal.
Wenjie ZhangYao ZhangWentao SuYong JiangMin SuPing GaoDaping Li