In the past twenty years, electromagnetic metamaterials represented by left-handed metamaterials(LHMs) have attracted considerable attention due to the unique properties such as negative refraction, perfect lens, and electromagnetic cloaks. In this paper, we present a comprehensive review of our group's work on metamaterials and metasurfaces. We present several types of LHMs and chiral metamaterials. As a two-dimensional equivalent of bulk three-dimensional metamaterials, metasurfaces have led to a myriad of devices due to the advantages of lower profile, lower losses, and simpler to fabricate than bulk three-dimensional metamaterials. We demonstrate the novel microwave metadevices based on metamaterials and metasurfaces: perfect absorbers and microwave patch antennas, including novel transmission line antennas,high gain resonant cavity antennas, wide scanning phased array antennas, and circularly polarized antennas.
Optical metamaterials present opportunities and challenges for manipulation of light. However, metamaterials with visible and near infrared responses are still particularly challenging to fabricate due to the complex preparation process and high loss. Here, a visible light poly(amidoamine)(PAMAM)-Ag metamaterial is prepared with the assistance of fifth-generation PAMAM(5G PAMAM), based on the dendritic structure. The large area of metamaterials, where Ag nanoparticles are spherical with diameters of ~9 nm and distributed in a multilevel netlike sphere, results in broadband resonance. The negative Goos–Hanchen shift and anomalous spin Hall effect of light generated by 5G PAMAM-Ag in visible broadband are observed, and a strong slab focusing effect at 750–1050 nm is demonstrated. In addition, the simulation shows possible application of the dendritic structure in topological photonics. The results offer advances in the preparation of large-scale visible light metamaterials, showing the potential for subwavelength super-resolution imaging and quantum optical information fields.