The specimens were prepared with high alumina fiber accounting for 0. 5% , 10% or 15% by mass of the total amount of amorphous silica and high alumina fiber, using phenolic resin as binder, and extra-adding 0 or 0. 5% ZnO as sunscreen to cut the cost of SiO2 nanoporous insulation board. The hot volume stability and thermal conductivity (flat plate method ) of the specimens were tested and multi-Jimetion simulation equipment was used to study the thermal insulation performante. The results show that: (1) with high alumina fiber addition increasing, the linear shrinkage rate decreases, but thermal eonductivity changes a little; (2) adding ZnO can decrease thermal conductivity obviously; (3)for the specimen with ZnO and 15% of high alumina fiber, its cold face temperature hardly rises during the simulation experiment at 1 000 ℃ for 2 h, and the cold face temperature of the specimen with the smallest thickness of 2 cm doesn't exceed 180 ℃.
Significant energy saving effects can be made through the improvement of furnace refractories,especially the thermal insulation refractories. In this study,the preparation and the application of different alumina based porous ceramics were briefly introduced. Alumina based porous ceramics were prepared combined foaming method with gelcasting,sol- gel process or cement curing process. The influences of different preparation methods on the sintering shrinkage, porosity, phase composition, microstructure, compressive strength and thermal conductivity were discussed. Alumina based porous ceramics with relatively high strength and low thermal conductivity could be obtained through the above mentioned methods. Compared with the traditional lining materials,about 40% energy could be saved when they were used as the furnace wall.