针对局部均值分解(Local Mean Decomposition,LMD)在提取故障特征时易受到噪声干扰的问题,提出了一种基于局部均值分解和独立分量分析(Independent Component Analysis,ICA)的滚动轴承故障诊断方法。该方法首先采用LMD方法提取信号PF分量;其次,对PF分量进行ICA盲源分离,得到PF分量的估计信号,有效去除了分量中的噪声成分;然后,提取估计信号的互信息、相关系数和近似熵作为特征向量;最后,采用SVM对特征向量进行故障分类,通过特征提取和故障诊断实验,结果表明LMD-ICA方法的故障识别率明显高于传统LMD方法。
为了提高轴承故障诊断准确率,缩短神经网络训练时间,将周期能量特征和优化的局域均值分解(local mean decomposition,简称LMD)特征结合,提出了一种新的轴承故障诊断方法。首先,采用形态滤波法对振动信号去噪;其次,以轴承一个旋转周期采样点数为标准,对振动信号进行截取,提取周期能量特征和LMD特征;然后,对提取的特征进行u律压扩和滑动平均优化处理;最后,设计两个同精度神经网络,采用经优化和未优化的特征对设计好的RBF神经网络进行训练,用训练好的神经网络进行故障诊断。实验结果表明,神经网络收敛迭代次数减少了50次,诊断正确率提高了10%,提高了轴承故障诊断正确率,缩短了神经网络训练时间。
直升机传动系统故障诊断及预测对提高其运行时的可靠性和安全性具有重要意义。本研究首先采用小波包降噪与局部均值分解相结合的方法提取滚动轴承故障特征,其次用故障样本对设计好的RBF(Radial Basis Function Neural Net-work,简称RBF)诊断网络进行训练,最后利用训练好的RBF网络实现故障的智能诊断。实验结果验证了该方法能够有效地对滚动轴承故障进行分类识别。
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。